630 research outputs found

    A Spitzer Search For Planetary-Mass Brown Dwarfs With Circumstellar Disks: Candidate Selection

    Get PDF
    We report on initial results from a Spitzer program to search for very low-mass brown dwarfs in Ophiuchus. This program is an extension of an earlier study by Allers et al. which had resulted in an extraordinary success rate, 18 confirmed out of 19 candidates. Their program combined near-infrared and Spitzer photom- etry to identify objects with very cool photospheres together with circumstellar disk emission to indicate youth. Our new program has obtained deep IRAC pho- tometry of a 0.5 deg2 field that was part of the original Allers et al. study. We report 18 new candidates whose luminosities extend down to 10-4 L\cdot which sug- gests masses down to ~ 2 MJ if confirmed. We describe our selection techniques, likely contamination issues, and follow-on photometry and spectroscopy that are in progress

    Genetic and physical mapping of DNA replication origins in Haloferax volcanii

    Get PDF
    The halophilic archaeon Haloferax volcanii has a multireplicon genome, consisting of a main chromosome, three secondary chromosomes, and a plasmid. Genes for the initiator protein Cdc6/Orc1, which are commonly located adjacent to archaeal origins of DNA replication, are found on all replicons except plasmid pHV2. However, prediction of DNA replication origins in H. volcanii is complicated by the fact that this species has no less than 14 cdc6/orc1 genes. We have used a combination of genetic, biochemical, and bioinformatic approaches to map DNA replication origins in H. volcanii. Five autonomously replicating sequences were found adjacent to cdc6/orc1 genes and replication initiation point mapping was used to confirm that these sequences function as bidirectional DNA replication origins in vivo. Pulsed field gel analyses revealed that cdc6/orc1-associated replication origins are distributed not only on the main chromosome (2.9 Mb) but also on pHV1 (86 kb), pHV3 (442 kb), and pHV4 (690 kb) replicons. Gene inactivation studies indicate that linkage of the initiator gene to the origin is not required for replication initiation, and genetic tests with autonomously replicating plasmids suggest that the origin located on pHV1 and pHV4 may be dominant to the principal chromosomal origin. The replication origins we have identified appear to show a functional hierarchy or differential usage, which might reflect the different replication requirements of their respective chromosomes. We propose that duplication of H. volcanii replication origins was a prerequisite for the multireplicon structure of this genome, and that this might provide a means for chromosome-specific replication control under certain growth conditions. Our observations also suggest that H. volcanii is an ideal organism for studying how replication of four replicons is regulated in the context of the archaeal cell cycle. © 2007 Norais et al

    R=100,000 Spectroscopy of Photodissociation Regions: H2 Rotational Lines in the Orion Bar

    Full text link
    Ground state rotational lines of H2 are good temperature probes of moderately hot (200-1000 K) gas. The low A-values of these lines result in low critical densities while ensuring that the lines are optically thin. ISO observations of H2 rotational lines in PDRs reveal large quantities of warm gas that are difficult to explain via current models, but the spatial resolution of ISO does not resolve the temperature structure of the warm gas. We present and discuss high spatial resolution observations of H2 rotational line emission from the Orion Bar.Comment: 4 pages, 1 figure, Proceedings of the ESO Workshop on High Resolution Infrared Spectroscop

    Haloferax volcanii for biotechnology applications: challenges, current state and perspectives

    Get PDF
    © 2019, The Author(s). Haloferax volcanii is an obligate halophilic archaeon with its origin in the Dead Sea. Simple laboratory culture conditions and a wide range of genetic tools have made it a model organism for studying haloarchaeal cell biology. Halophilic enzymes of potential interest to biotechnology have opened up the application of this organism in biocatalysis, bioremediation, nanobiotechnology, bioplastics and the biofuel industry. Functionally active halophilic proteins can be easily expressed in a halophilic environment, and an extensive genetic toolkit with options for regulated protein overexpression has allowed the purification of biotechnologically important enzymes from different halophiles in H. volcanii. However, corrosion mediated damage caused to stainless-steel bioreactors by high salt concentrations and a tendency to form biofilms when cultured in high volume are some of the challenges of applying H. volcanii in biotechnology. The ability to employ expressed active proteins in immobilized cells within a porous biocompatible matrix offers new avenues for exploiting H. volcanii in biotechnology. This review critically evaluates the various application potentials, challenges and toolkits available for using this extreme halophilic organism in biotechnology

    Polarized Infrared Emission by Polycyclic Aromatic Hydrocarbons resulting from Anisotropic Illumination

    Full text link
    We study the polarized infrared emission by Polycyclic Aromatic Hydrocarbons (PAHs), when anisotropically illuminated by UV photons. PAH molecules are modeled as planar disks with in-plane and out-of-plane vibrational dipoles. As first pointed out by Leger (1988), infrared emission features resulting from in-plane and out-of-plane modes should have orthogonal polarization directions. We show analytically how the degree of polarization depends on the viewing geometry and the molecule's internal alignment between principal axis of inertia and angular momentum, which gets worse after photon absorption. Longer wavelength features, emitted after better internal alignment is recovered, should be more strongly polarized. The degree of polarization for uni-directional illumination (e.g., by a star) is larger than for diffuse illumination (e.g., by a disk galaxy), all else being equal. For PAHs in the Cold Neutral Medium, the predicted polarization is probably too small to distinguish from the contribution of linear dichroism by aligned foreground dust. The level of polarization predicted for PAH emission from the Orion Bar is only ~0.06% at 3.3 microns; Sellgren et al. (1988) report a much larger value, 0.86+-0.28%, which suggests that the smallest PAHs may have moderately suprathermal rotation rates. Future observations of (or upper limits on) the degree of polarization for the Orion Bar or for dust above edge-on galaxies (e.g., NGC 891 or M82) may constrain the internal alignment of emitting PAHs, thus providing clues to their rotational dynamics.Comment: 9 pages, 4 figures, 1 table, submitted to Ap

    A compact high resolution ion mobility spectrometer for fast trace gas analysis

    Get PDF
    Drift tube ion mobility spectrometers (IMS) are widely used for fast trace gas detection in air, but portable compact systems are typically very limited in their resolving power. Decreasing the initial ion packet width improves the resolution, but is generally associated with a reduced signal-to-noise-ratio (SNR) due to the lower number of ions injected into the drift region. In this paper, we present a refined theory of IMS operation which employs a combined approach for the analysis of the ion drift and the subsequent amplification to predict both the resolution and the SNR of the measured ion current peak. This theoretical analysis shows that the SNR is not a function of the initial ion packet width, meaning that compact drift tube IMS with both very high resolution and extremely low limits of detection can be designed. Based on these implications, an optimized combination of a compact drift tube with a length of just 10 cm and a transimpedance amplifier has been constructed with a resolution of 183 measured for the positive reactant ion peak (RIP+), which is sufficient to e.g. separate the RIP+ from the protonated acetone monomer, even though their drift times only differ by a factor of 1.007. Furthermore, the limits of detection (LODs) for acetone are 180 ppt(v) within 1 s of averaging time and 580 pptv within only 100 ms

    A Simple Printed Circuit Board–Based Ion Funnel for Focusing Low m/z Ratio Ions with High Kinetic Energies at Elevated Pressure

    Get PDF
    Ion funnels are one of the key components for transferring ions from higher pressure into the vacuum. Typically, ion funnels are constructed of several different plate ring electrodes with a decreasing inner diameter where radio frequency (RF) voltages and electric DC fields are applied to the electrodes to focus and transport ion clouds. In this work, we developed and investigated a simple and low-cost ion funnel design that is based on standard printed circuit boards (PCB) with integrated planar electrodes including the signal distribution network. This ion funnel is capable of withstanding high electric fields with superimposed RF voltages due to its buried capacitors. To evaluate the ion focusing efficiency of the ion funnel, we simulated the movement of ions inside this funnel and experimentally evaluated the ion transfer. Our simulations show that a rectangular ion funnel like the PCB ion funnel has similar performance compared with conventional stacked ring funnels. Due to the hundredfold lower parasitic capacitance between the planar electrodes compared with conventional ion funnels, high RF voltage amplitudes up to 195 V and reduced electric DC field strengths up to 100 Td can be reached at a frequency of about 5 MHz. Thus, the funnel is appropriate to focus light ions at elevated pressures up to 20 mbar

    High Kinetic Energy Ion Mobility Spectrometry (HiKE-IMS) at 40 mbar

    Get PDF
    High Kinetic Energy Ion Mobility Spectrometers (HiKE-IMS) are usually operated at an absolute pressure of 20 mbar reaching high reduced electric field strengths of up to 125 Td for controlled reaction kinetics. This significantly increases the linear range and limits chemical cross sensitivities. Furthermore, HiKE-IMS enables the ionization of compounds normally not detectable in ambient pressure IMS, such as benzene, due to new reaction pathways and the inhibition of clustering reactions. In addition, HiKE-IMS allows the observation of additional orthogonal parameters related to an increased ion temperature such as fragmentation and field-dependent ion mobility, which may help to separate compounds that have similar ion mobility under low field conditions. Aiming for a hand-held HiKE-IMS to carry its benefits into field applications, reducing size and power consumption of the vacuum system is necessary. In this work, we present a novel HiKE-IMS design entirely manufactured from standard printed circuit boards (PCB) and experimentally investigate the analytical performance in dependence of the operating pressure between 20 mbar and 40 mbar. Hereby, the limit of detection (LoD) for benzene in purified, dry air (1.4 ppmV water) improved from 7 ppbV at 20 mbar down to 1.8 ppbV at 40 mbar. Furthermore, adding 0.9 ppmV toluene the signal of the benzene B+ peak decreases by only 2 % at 40 mbar. Even in the presence of high relative humidity in the sample gas above 90 % or toluene concentrations of up to 20 ppmV, the LoD for benzene just increases to 9 ppbV at 40 mbar

    Formation of positive product ions from substances with low proton affinity in high kinetic energy ion mobility spectrometry

    Get PDF
    Rationale: Ion mobility spectrometry (IMS) instruments are typically equipped with atmospheric pressure chemical ionization (APCI) sources operated at ambient pressure. However, classical APCI-IMS suffers from a limited ionization yield for nonpolar substances with low proton affinity (PA). This is mainly due to ion clustering processes, especially those that involve water molecules, inhibiting the ionization of these substances. Methods: High Kinetic Energy (HiKE)-IMS instruments are operated at decreased pressures and high reduced electric field strengths. As most clustering reactions are inhibited under these conditions, the ionization yield for nonpolar substances with low PA in HiKE-IMS should differ from that in classical APCI-IMS. To gain first insights into the ionization capabilities and limitations of HiKE-IMS, we investigated the ionization of four model substances with low PA in HiKE-IMS using HiKE-IMS-MS as a function of the reduced electric field strength. Results: The four model substances all have proton affinities between those of H2O and (H2O)2 but exhibit different ionization energies, dipole moments, and polarizabilities. As expected, the results show that the ionization yield for these substances differs considerably at low reduced electric field strengths due to ion cluster formation. In contrast, at high reduced electric field strengths, all substances can be ionized via charge and/or proton transfer in HiKE-IMS. Conclusions: Considering the detection of polar substances with high PAs, classical ambient pressure IMS should reach better detection limits than HiKE-IMS. However, considering the detection of nonpolar substances with low PA that are not detected, or only difficult to detect, at ambient pressure, HiKE-IMS would be beneficial
    corecore